A Kirk Type Characterization of Completeness for Partial Metric Spaces
نویسندگان
چکیده
منابع مشابه
Completeness in Probabilistic Metric Spaces
The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...
متن کاملAssad-Kirk-Type Fixed Point Theorems for a Pair of Nonself Mappings on Cone Metric Spaces
New fixed point results for a pair of non-self mappings defined on a closed subset of a metrically convex conemetric space which is not necessarily normal are obtained. By adapting Assad-Kirk’s method the existence of a unique common fixed point for a pair of non-self mappings is proved, using only the assumption that the cone interior is nonempty. Examples show that the obtained results are pr...
متن کاملON COMPACTNESS AND G-COMPLETENESS IN FUZZY METRIC SPACES
In [Fuzzy Sets and Systems 27 (1988) 385-389], M. Grabiec in- troduced a notion of completeness for fuzzy metric spaces (in the sense of Kramosil and Michalek) that successfully used to obtain a fuzzy version of Ba- nachs contraction principle. According to the classical case, one can expect that a compact fuzzy metric space be complete in Grabiecs sense. We show here that this is not the case,...
متن کاملFORMAL BALLS IN FUZZY PARTIAL METRIC SPACES
In this paper, the poset $BX$ of formal balls is studied in fuzzy partial metric space $(X,p,*)$. We introduce the notion of layered complete fuzzy partial metric space and get that the poset $BX$ of formal balls is a dcpo if and only if $(X,p,*)$ is layered complete fuzzy partial metric space.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory and Applications
سال: 2010
ISSN: 1687-1820,1687-1812
DOI: 10.1155/2010/493298